Гемоглобин — виды, функции, назначение на анализ, норма показателя и причины отклонения

Гемоглобин – это жизненно необходимый организму белок, который выполняет несколько функций, но основная – перенос кислорода к тканями и клеткам. Дефицит гемоглобина может привести к серьезным последствиям. Именно этот белок придает крови насыщенный красный цвет, благодаря содержанию железа в нем. Гемоглобин содержится в эритроцитах и состоит из соединений железа и глобина (белка).

Гемоглобин — виды и функции

Значение и виды гемоглобина в крови

Гемоглобин должен содержаться в крови человека в достаточном количестве, чтобы ткани получали необходимое им количество кислорода. Каждая молекула гемоглобина содержит в себе атомы железа, которые и связывают кислород.

Можно выделить три основные функции гемоглобина:

  1. Транспорт кислорода. Самая известная функция. Человек вдыхает воздух, молекулы кислорода попадают в легкие, а уже оттуда транспортируются к другим клеткам и тканям. Гемоглобин связывает молекулы кислорода и переносит их. Если эта функция нарушается, начинается кислородное голодание, что особенно опасно для мозга.
  2. Транспорт углекислого газа. Помимо кислорода гемоглобин может связывать и переносить молекулы углекислого газа, что также важно.
  3. Поддержание уровня рН. Углекислый газ, скапливаясь в крови, вызывает ее закисление. Этого нельзя допускать, молекулы углекислого газа должны постоянно выводиться.

В крови человека белок присутствует в нескольких разновидностях. Выделяют следующие виды гемоглобина:

  • Оксигемоглобин. Это гемоглобин со связанными молекулами кислорода. Он содержится в артериальной крови, поэтому она ярко-алая.
  • Карбоксигемоглобин. Гемоглобин со связанными молекулами углекислого газа. Они транспортируются в легкие, где углекислый газ выводится, а гемоглобин снова насыщается кислородом. Этот вид белка сдержится в венозной более темной и густой и крови.
  • Гликированный гемоглобин. Это неразделимое соединение белка и глюкозы. Этот вид глюкозы может циркулировать в крови достаточно долго, поэтому его используют для определения уровня сахара в крови.
  • Фетальный гемоглобин. Этот гемоглобин можно встретит в крови плода или новорожденного ребенка в первые несколько недель жизни. Это более активный в плане переноса кислорода гемоглобин, но быстро разрушающийся под воздействием факторов окружающей среды.
  • Метгемоглобин. Это гемоглобин, связанный с различными химическими агентами. Его рост может говорить об отравлении организма. Связи белка и агентов достаточно прочные. При повышении уровня этого вида гемоглобина нарушается насыщаемость тканей кислородом.
  • Сульфгемоглобин. Этот вид белка появляется в крови при приеме различных препаратов. Его содержание обычно не превышает 10%.

Диагностика уровня гемоглобина

Исследование уровня гемоглобина: назначение, подготовка и процедура

Гемоглобин входит в клинический анализ крови. Поэтому чаще всего назначается полный анализ крови и оцениваются все показатели в целом, даже если важен лишь гемоглобин.

При подозрении на сахарный диабет сдают отдельный анализ на гликированный гемоглобин. При этом у пациента наблюдается повышенная жажда, частое мочеиспускание, он быстро устает и часто болеет вирусными заболеваниями.

В любом случае кровь сдается утром на голодный желудок. Желательно, чтобы после последнего приема пищи прошло не менее 8 часов. Накануне анализа нежелательно заниматься физическими нагрузками, курить, употреблять алкоголь и любые лекарственные препараты. Если некоторые препараты отменить невозможно, об их приеме необходимо сообщить лечащему врачу. Придерживаться диеты не обязательно, но рекомендуется воздержаться от жирной и жареной пищи, поскольку показатели могут измениться. Во время беременности анализ на гемоглобин (и другие показатели в целом) сдается часто, раз в несколько недель, при необходимости каждую неделю.

Врач может заподозрить недостаток гемоглобина и назначить анализ крови для проверки, если у пациента наблюдается пониженное давление, усталость, слабость, головные боли и головокружения, обмороки, а также выпадение волос и ломкость ногтей.

В различных лабораториях исследование крови на гемоглобин проводится по-разному в зависимости от имеющихся приборов. Измеряется либо содержание железа в гемоглобине, либо оценивается насыщенность цвета раствора крови.

Полезное видео — Гликированный гемоглобин повышен.

Чаще всего для измерения уровня гемоглобина используют соляную кислоту. Этот метод называется метод Сали. Полученный материал в определенном количестве смешивают с кислотой, а затем доводят до стандартного цвета с помощью дистиллированной воды. Количество гемоглобина определяется путем соотношения полученного объема с принятыми стандартами. Метод Сали используется давно, он несколько длительный и субъективный, во многом зависит от человеческого фактора. Однако современная медицина позволяет определять уровень гемоглобина более точными и автоматизированными методами, с помощью прибора под названием гемометр. Этот метод более быстрый, но тоже может давать расхождения до 3 грамм на литр.

Расшифровка анализа

Гемоглобин: норма и причины отклонения

Расшифровывать результат анализа должен только врач. Несмотря на кажущуюся простоту (достаточно узнать норму и сравнить результат), могут быть расхождения. К тому же врач оценит остальные показатели и сможет определить, какое еще обследование необходимо провести.

  • У мужчин норма гемоглобина выше, чем у женщин. Она составляет 130-160 г/л, у женщин – 120-140 г/л.
  • Во время беременности гемоглобин может падать до 90 г/л из-за увеличенного объема крови.
  • У маленького ребенка норма еще выше. Если это новорожденный ребенок, его гемоглобин может превышать 200 г/л. С возрастом уровень уменьшается за счет распада фетального гемоглобина.

Гликированный гемоглобин определяется в зависимости от уровня общего. В норме он составляет не более 6,5%. У женщин гемоглобин падает во время месячных, и это считается нормой из-за определенной потери крови. В это время показатель в 100-110 г/л не считается отклонением. При расшифровке врач должен учитывать факторы, влияющие на уровень гемоглобина у пациента: это операции, кровотечения (менструальные, геморроидальные и даже кровоточивость десен).

Низким считается гемоглобин ниже 90-100 г/л.

Если эта отметка достигает 30-40 г/л, это критическое понижения гемоглобина, требующее госпитализации и наблюдения. При подобной анемии страдают все органы и системы организма. Причинами снижения уровня гемоглобина могут быть не только различные кровотечения, но и патологии органов репродуктивной системы, инфекции, аутоиммунные и наследственные заболевания, раковые опухоли. Поэтому при хронически низком гемоглобине желательно провести дополнительное обследование.

Повышенный уровень гемоглобина (больше 160-200 г/л) вовсе не является хорошим признаком и не говорит о достаточном количестве кислорода в тканях. Это является нормой только при нахождении в условиях с недостаточным уровнем кислорода, например, при работе на большой высоте. Повышенный уровень гемоглобина может указывать на нарушение работы внутренних органов, онкологическое заболевание, бронхиальную астму, серьезные заболевания сердца и легких, туберкулез и т.д.

Гемоглобин

Гемоглобин (Hb) — сложный белок, обеспечивающий транспорт кислорода из легких к тканям. Гемоглобин состоит из белковых цепей и гема — порфиринового кольца, которое содержит железо.

Анемия у взрослых. Общие сведения.

Анемия у взрослых. Определение. О норме. Причины анемии. С.

Физиологически, основной функцией гемоглобина является перенос кислорода из легких к органам и тканям, но не меньшей важностью является перенос гемоглобином оксида азота (NO) и регуляция тонуса сосудов (вазомоторного тонуса).

Низкий уровень гемоглобина является одним из проявлений анемии , повышенный уровень гемоглобина также является признаком ряда заболеваний и патологических состояний.

Гемоглобин. Цифры и факты

  • Одна молекула гемоглобина переносит четыре молекулы кислорода
  • Во всем гемоглобине в организме содержит 2,5 грамма железа у мужчин и 1,9 грамма у женщин
  • Паразит , вызывающий малярию , малярийный плазмодий, питается гемоглобином. Подробнее о малярии

ЭТО ИНТЕРЕСНО: физиологический процесс распада гемоглобина в организме называется гемоглобинолизом

Виды гемоглобинов

В организме здорового взрослого человека присутствует несколько типов гемоглобина:

  • Гемоглобин А (HbA)
  • Гемоглобин A2 (HbA2)
  • Фетальный гемоглобин (HbF)
  • Гликированный гемоглобин (HbA1C)

Все, что нужно знать о железе

Железо — это жизненно важный минерал, необходимый для правил.

Нормы гемоглобина

Казалось бы, все знают, что норма гемоглобина для женщин составляет 120-140 г/л (грамм на литр), а для мужчин 140-160 г/л. Но как и с нормальными показателями уровня сывороточного железа, с нормами гемоглобина не все так просто.

ЭТО ИНТЕРЕСНО: Методы определения концентрации гемоглобин в крови называются гемоглобинометрией

Сначала интересные факты о том, откуда взялись вышеуказанные нормы. Эти нормы разработаны ВОЗ, но разработаны они не для оценки нормального уровня гемоглобина как такового, а для оценки питания. Т.е. проще говоря, эти уровни гемоглобина соответствующие указанному диапазону, с точки зрения экспертов ВОЗ, говорят о том, что человек, в общем то, неплохо питается, не более того.

Ассоциация гематологов США предлагает рассматривать нижнюю границу нормы гемоглобина, на следующем уровне:

Нижняя граница нормы гемоглобина

Мужчины в возрасте от 20 до 59 лет

Мужчины в возрасте старше 60 лет

Женщины 20 лет и старше

* Нормы гемоглобин для представителей европеоидной расы

Как следует из приведенной таблицы, на уровень гемоглобина влияют пол и возраст, другие факторы, влияющие на уровень гемоглобина:

  • Проживание на большой высоте
  • Занятия спортом
  • Курение
  • Раса
  • Сопутствующие заболевания

У курящих, живущих на большой высоте, спортсменов — уровень гемоглобина будет выше, т.е. то, что для других норма, для других будет уже анемией. Как и наоборот, то, что для людей живущих примерно на уровне моря будет повышенным уровнем гемоглобина, для курящих, спортсменов и живущих на большой высоте будет нормой.

Норма гемоглобина у беременных женщин*

Гемоглобин (г/л)

Гематокрит (в процентах)

*Данные показатели получены в результате клинических исследований, но не являются нормативными. Подробнее о некоторых лабораторных нормах у беременных женщин.

Итак, после того, как мы рассказали о сложностях в оценке того, какой уровень является нормальным для гемоглобина, а какой нет, мы расскажем на какие нормативные показатели обычно ориентируются врачи.

ГЕМОГЛОБИН

ГЕМОГЛОБИН, Hb (haemoglobinum; греч. haima кровь + лат. globus шарик),— гемопротеид, сложный белок, относящийся к гемсодержащим хромопротеидам; осуществляет перенос кислорода от легких к тканям и участвует в переносе углекислого газа от тканей в органы дыхания. Гемоглобин содержится в эритроцитах всех позвоночных и некоторых беспозвоночных животных (черви, моллюски, членистоногие, иглокожие), а также в корневых клубеньках некоторых бобовых растений. Мол. вес (масса) Гемоглобина эритроцитов человека равен 64 458; в одном эритроците находится ок. 400 млн. молекул Гемоглобина. В воде Гемоглобин хорошо растворим, нерастворим в спирте, хлороформе, эфире, хорошо кристаллизуется (форма кристаллов Гемоглобина различных животных неодинакова).

В состав Гемоглобина входит простой белок— глобин и железосодержащая простетическая (небелковая) группа — гем (96 и 4% от массы молекулы соответственно). При pH ниже 2,0 происходит расщепление молекулы Гемоглобина на гем и глобин.

Содержание

  • 1 Гем
  • 2 Глобин
  • 3 Метаболизм гемоглобина
  • 4 Гемоглобин в клинической практике
  • 5 Гемоглобин в судебно-медицинском отношении
  • 6 Гемоглобины нестабильные
    • 6.1 Методы выявления нестабильных гемоглобинов

Гем (C34H32O4N4) представляет собой железопротопорфирин— комплексное соединение протопорфирина IX с двухвалентным железом. Железо находится в центре протопорфиринового ядра и связано с четырьмя атомами азота пиррольных ядер (рис. 1): две связи координационные и две связи с замещением водорода.

Поскольку координационное число железа равно 6, две валентности остаются неиспользованными, одна из них реализуется при связывании гема с глобином, а ко второй присоединяется кислород или другие лиганды — CO, F + , азиды, вода (рис. 2) и т. д.

Комплекс протопорфина IX с Fe 3+ называют гематином. Солянокислая соль гематина (хлоргемин, гемин) легко выделяется в . кристаллическом виде (так наз. кристаллы Тейхманна). Гем обладает способностью образовывать комплексные соединения с азотистыми соединениями (аммиаком, пиридином, гидразином, аминами, аминокислотами, белками и т. д.), превращаясь при этом в гемохромогены (см.). Поскольку у всех видов животных гем одинаков, то различия в свойствах гемоглобинов обусловлены особенностями строения белковой части молекулы Г. — глобина.

Глобин

Глобин — белок типа альбуминов, содержит в своей молекуле четыре полипептидные цепи: две альфа-цепи (в каждую из которых входит по 141 аминокислотному остатку) и две бета-цепи, содержащие по 146 остатков аминокислот. Т. о., белковый компонент молекулы Г. построен из 574 остатков различных аминокислот. Первичная структура, т. е. генетически обусловленная последовательность расположения аминокислот в полипептидных цепях глобина человека и ряда животных, полностью изучена. Отличительной особенностью глобина человека является отсутствие в его составе аминокислот изо лейцина и цистина. N-концевыми остатками в альфа- и бета-цепях являются остатки валина. C-концевые остатки альфа-цепей представлены остатками аргинина, а бета-цепей — гистидина. Предпоследнее положение в каждой из цепей занимают остатки тирозина.

Рентгеноструктурный анализ кристаллов Г. позволил выявить основные особенности пространственной структуры его молекулы [Перутц (М. Perutz)]. Оказалось, что альфа- и бета-цепи содержат спиральные сегменты различной длины, которые построены по принципу альфа-спиралей (вторичная структура); альфа-цепь имеет 7, а бета-цепь — 8 спиральных сегментов, соединенных неспиральными участками. Спиральные сегменты, начиная с N-конца, обозначаются буквами латинского алфавита (А, В, С, D, E, F, G, Н), а неспиральные участки или углы поворота спиралей имеют соответствующее обозначение (АВ, ВС, CD, DE и т. д.). Неспиральные участки на аминном (N) или карбоксильном (С) конце цепи глобина обозначают соответственно NA или НС. Аминокислотные остатки нумеруются в каждом сегменте и, кроме того, в скобках дается нумерация данного остатка от N-конца цепи.

Спиральные и неспиральные участки определенным образом уложены в пространстве, что определяет третичную структуру цепей глобина. Последняя почти идентична у альфа- и бета-цепей Г., несмотря на значительные различия в их первичной структуре. Это обусловлено специфическим расположением полярных и гидрофобных групп аминокислот, приводящим к скоплению неполярных групп во внутренней части глобулы с образованием гидрофобного ядра. Полярные группы белка обращены к водной среде, находясь с ней в контакте. Внутри каждой цепи глобина недалеко от поверхности находится гидрофобная впадина («гемовый карман»), в к-рой располагается гем, ориентируясь так, что его неполярные заместители направлены во внутрь молекулы, входя в состав гидрофобного ядра. В результате возникает ок. 60 неполярных контактов между гемом и глобином и один-два полярных (ионных) контакта гема с альфа- и бета-цепями, в которых участвуют остатки пропионовой к-ты гема, выходящие наружу из гидрофобного «кармана». Расположение гема в гидрофобной впадине глобина обеспечивает возможность обратимого присоединения кислорода к Fe 2+ гема без окисления последнего до Fe 3+ и характерно для гемоглобинов различных видов животных. Подтверждением этого является крайняя чувствительность Г. к любым изменениям неполярных контактов вблизи гема. Так, замена гема в Г. на гематопорфирин приводит к резкому нарушению свойств Г.

Некоторые аминокислотные остатки, окружающие гем в гидрофобной впадине, относятся к числу инвариантных аминокислот, т. е. аминокислот, одинаковых для различных видов животных и существенных для функции Г. Среди инвариантных аминокислот большое значение отводится трем: остаткам гистидина, так наз. проксимальным гистидинам (87-я позиция в а- и 92-я позиция в P-цепях), дистальным гистидинам (58-я позиция в а- и 63-я позиция в (5-цепях), a также остатку валина Е-11 (62-я позиция в альфа-цепи и 67-я позиция в бета-цепи).

Связь между так наз. проксимальным гистидином и железом гема является единственной хим. связью между ними (реализуется пятая координационная связь атома Fe 2+ гема) и непосредственно влияет на присоединение кислорода к гему. «Дистальный» гистидин непосредственно не связан с гемом и участия в фиксировании кислорода не принимает. Его значение состоит в стабилизации атома Fe 2+ против необратимого окисления (по-видимому, за счет образования водородной связи между кислородом и азотом). Остаток валина (Е-11) является своего рода регулятором скорости присоединения кислорода к гемам: в бета-цепях он стерически расположен так, что занимает то место, куда должен присоединиться кислород, вследствие чего оксигенация начинается с фльфа-цепей.

Белковая часть и простетическая группа молекулы Г. оказывают друг на друга сильное влияние. Глобин изменяет многие свойства гема, придавая ему способность к связыванию кислорода. Гем обеспечивает устойчивость глобина к действию к-т, нагреванию, расщеплению ферментами и обусловливает особенности кристаллизационных свойств Г.

Полипептидные цепи с присоединенными к ним молекулами гема образуют четыре основные части — субъединицы молекулы Г. Характер соединения (укладки) их между собой ц расположение в пространстве определяют особенности четвертичной структуры Г.: а- и P-цепи располагаются по углам тетраэдра вокруг оси симметрии, причем альфа-цепи лежат поверх p-цепей и как бы втискиваются между ними, а все четыре гема далеко удалены друг от друга (рис. 3). В целом образуется тетрамерная сфероидная частица с размерами 6,4 X 5,5 х 5,0 нм. Четвертичная структура стабилизирована солевыми связями между α—α- и β-β-цепями и двумя видами контактов между α и β-цепями (α1-β1 и α2-β2). Контакты α1-β1 наиболее обширны, в них участвуют 34 аминокислотных остатка, большинство взаимодействий неполярно. Контакт α1-β2 включает 19 аминокислотных остатков, большинство связей также неполярно, за исключением нескольких водородных связей. Все остатки, находящиеся в этом контакте, одинаковы у всех изученных видов животных, в то время как 1/3 остатков в α1-β1-контактах варьирует.

Г. человека гетерогенен, что обусловлено различием полипептидных цепей, входящих в его состав. Так, Г. взрослого человека, составляющий 95—98% Г. крови (HbA), содержит две α- и две β-цепи; малая фракция Г. (HbA2), достигающая максимального содержания 2,0—2,5%, содержит две α- и две σ-цепи; гемоглобин плода (HbF), или фетальный гемоглобин, составляющий в крови взрослого человека 0,1—2% , состоит из двух α- и двух γ-цепей.

Фетальный Г. заменяется на HbA в первые месяцы после рождения. Он характеризуется значительной устойчивостью к тепловой денатурации, на чем основаны методы определения его содержания в крови.

В зависимости от состава полипептидных цепей перечисленные типы Г. обозначаются следующим образом: HbA — как Hbα2β2, HbA2 — как Hbα2σ2, a HbF — как Hbα2γ. При врожденных аномалиях и заболеваниях кроветворного аппарата появляются аномальные типы Г., напр, при серповидноклеточной анемии (см.), талассемии (см.), врожденной метгемоглобинемии неэнзиматического происхождения (см. Метгемоглобинемия) и др. Наиболее часто встречается замещение единственной аминокислоты в одной паре полипептидных цепей.

В зависимости от величины валентности атома железа гема и типа лиганда в молекуле Г. последний может находиться в нескольких формах. Восстановленный Г. (дезокси-Hb) имеет Fe 2+ со свободной шестой валентностью, при присоединении к нему O2 образуется оксигенированная форма Г. (HbO2). При действии на HbO2 ряда окислителей (феррицианид калия, нитриты, хиноны и др.) происходит окисление Fe 2+ до Fe 3+ с образованием метгемоглобин, неспособного к переносу O2. В зависимости от величины pH среды различают кислую и щелочную форму метгемоглобина, содержащих в качестве шестого лиганда H2O или OH-группу. В крови здоровых людей концентрация метгемоглобина составляет 0,83+0,42% .

Метгемоглобин обладает способностью прочно связывать фтористый водород, синильную к-ту и другие вещества. Этим его свойством пользуются в мед. практике для спасения людей, отравленных синильной к-той. Различные производные Г. различаются по спектрам поглощения (табл.).

Длина волны (при максимуме поглощений), нм

Миллиэквивалентный коэффициент светопоглощения, E

Метгемоглобин (мет-Hb; pH 7,0-7,4)

Функциональные свойства гемоглобина. Основная биол, роль Г.— участие в газообмене между организмом и внешней средой. Г. обеспечивает перенос кровью кислорода от легких к тканям и транспорт углекислоты от тканей к легким (см. Газообмен). Не менее важны и буферные свойства Г., образующего мощные гемоглобинную и оксигемоглобинную буферные системы крови, способствующие, т. о., поддержанию кислотно-щелочного равновесия в организме (см. Буферные системы, Кислотно-щелочное равновесие).

Кислородная емкость HbO2 составляет 1,39 мл O2 на 1 г HbO2. Способность Г. связывать и отдавать кислород отражается его кислородно-диссоциационной кривой (КДК), характеризующей процент насыщения Г. кислородом в зависимости от парциального давления O2 (pO2).

Тетрамерные молекулы Г. имеют S-образную форму КДК, что свидетельствует о том, что Г. обеспечивает оптимальное связывание кислорода при относительно низком его парциальном давлении в легких и отдачу — при сравнительно высоком парциальном давлении кислорода в тканях (рис. 4). Максимальная отдача кислорода тканям сочетается с сохранением высокого парциального давления его в крови, что обеспечивает проникновение кислорода в глубь тканей. Величина парциального давления кислорода в мм рт. ст., при к-рой 50% Г. оксигенировано, является мерой сродства Г. к кислороду и обозначается Р50.

Присоединение кислорода к четырем гемам Г. происходит последовательно. S-образный характер КДК Г. свидетельствует о том, что первая молекула кислорода соединяется с Г. очень медленно, т. е. ее сродство к Г. невелико, поскольку требуется разорвать солевые контакты в молекуле дезоксигемоглобина. Однако присоединение первой молекулы кислорода увеличивает сродство к нему оставшихся трех гемов, и дальнейшая оксигенация Г. происходит значительно быстрее (оксигенация четвертого гема происходит в 500 раз быстрее, чем первого). Следовательно, налицо кооперативное взаимодействие между центрами, связывающими кислород. Закономерности реакции Г. с окисью углерода (СО) те же, что и для кислорода, но сродство Г. к СО почти в 300 раз выше, чем к O2, что обусловливает высокую ядовитость угарного газа. Так, при концентрации СО в воздухе, равной 0,1%, больше половины Г. крови оказывается связанным не с кислородом, а с угарным газом. При этом происходит образование карбоксигемоглобина, неспособного к переносу кислорода.

Регуляторы процесса оксигенации гемоглобина. Большое влияние на процессы оксигенации и дезоксигенации оказывают водородные ионы, органические фосфаты, неорганические соли, температура, углекислота и некоторые другие вещества, контролирующие величину сродства Г. к кислороду в соответствии с физиол. запросами организма. Зависимость сродства Г. к кислороду от величины pH среды носит название эффекта Бора (см. Вериго эффект). Различают «кислый» (рН 6). Наибольшее физиол. значение имеет «щелочной» эффект Бора. Его молекулярный механизм обусловлен наличием в молекуле Г. ряда положительно заряженных функциональных групп, константы диссоциации которых значительно выше в дезоксигемоглобине за счет образования солевых мостиков между отрицательно заряженными группами соседних белковых цепей внутри молекулы Г. В процессе оксигенации вследствие происходящих конформационных изменений молекулы Г. солевые мостики разрушаются, изменяется pH отрицательно заряженных групп и протоны выделяются в р-р. Следовательно, оксигенация приводит к отщеплению протона (H + ) от молекулы Г. и, наоборот, изменение величины pH, т. е. косвенно концентрации ионов H + , среды влияет на присоединение к Г. кислорода. Т. о., H + становится лигандом, связывающимся преимущественно с дезоксигемоглобином и тем самым уменьшающим его сродство к кислороду, т. е. изменение величины pH в кислую сторону вызывает сдвиг КДК вправо. Процесс оксигенации является эндотермическим, и повышение температуры способствует отщеплению кислорода от молекулы Г. Следовательно, усиление деятельности органов и повышение температуры крови вызовет сдвиг КДК вправо, и отдача кислорода тканям увеличится.

Своеобразную регуляцию процесса оксигенации осуществляют органические фосфаты, локализующиеся в эритроцитах. В частности, 2,3-дифосфоглицерат (ДФГ) значительно уменьшает сродство Г. к кислороду, способствуя отщеплению O2 от оксигемоглобина. Влияние ДФГ на Г. возрастает при уменьшении значения pH (в пределах физиол, области), поэтому его влияние на КДК Г. проявляется в большей степени при низких величинах pH. ДФГ связывается преимущественно с дезоксигемоглобином в молярных соотношениях 1:1, входя во внутреннюю впадину его молекулы и образуя 4 солевых мостика с двумя альфа-NH2-группами остатков валина бета-цепей и, по-видимому, с двумя имидазольными группами гистидинов Н-21 (143) бета-цепей. Влияние ДФГ уменьшается с увеличением температуры, т. е. процесс связывания ДФГ с молекулой Г. является экзотермическим. Это приводит к тому, что в присутствии ДФГ в значительной мере исчезает зависимость процесса оксигенации от температуры. Следовательно, нормальное освобождение кислорода кровью делается возможным в широком интервале температур. Аналогичный эффект, хотя и в меньшей степени, оказывают АТФ, пиридоксальфосфата другие органические фосфаты. Т. о., концентрация органических фосфатов в эритроцитах оказывает значительное действие на дыхательную функцию Г., быстро приспосабливая ее к различным физиол, и патол, условиям, связанным с нарушением оксигенации * (изменение содержания кислорода в атмосфере, кровопотеря, регуляция транспорта кислорода от матери к плоду через плаценту и т. п.). Так, при анемии и гипоксии в эритроцитах увеличивается содержание ДФГ, что сдвигает КДК вправо и вызывает большую отдачу кислорода тканям. Многие нейтральные соли (ацетаты, фосфаты, хлориды калия и натрия) также уменьшают сродство Г. к кислороду. Этот эффект зависит от природы вещества и сходен с эффектом органических фосфатов. В присутствии высокой концентрации соли сродство Г. к кислороду достигает минимума — в одинаковой степени для различных солей и ДФГ, т. е. и соли, и ДФГ конкурируют друг с другом за одни и те же центры связывания на молекуле Г. Так, напр., влияние ДФГ на сродство Г. к кислороду исчезает в присутствии 0,5 М хлорида натрия.

Еще в 1904 г. Бор (Ch. Bohr) с сотр. показал уменьшение сродства Г. к кислороду при увеличении парциального давления углекислого газа в крови.

Увеличение содержания углекислого газа приводит в первую очередь к изменению pH среды, однако значение Р50 уменьшается в большей степени, чем это следовало бы ожидать при таком уменьшении зна

чения pH. Это обусловлено специфическим взаимоотношением углекислого газа с незаряженными альфа-NH2-группами альфа-цепей, а возможно, и бета-цепей Г. с образованием карбаматов (карбгемоглобина) по следующей схеме:

Дезоксигемоглобин связывает большее количество углекислого газа, чем HbO2. В эритроците присутствие ДФГ конкурентно ингибирует образование карбаматов. С помощью карбаматного механизма из организма здоровых людей в покое выводится до 15% углекислого газа. Более 70% буферной емкости крови обеспечивается находящимся в ней Г., что приводит и к значительному косвенному участию Г. в переносе углекислого газа. При протекании крови через ткани HbO2 переходит в дезоксигемоглобин, связывая при этом ионы H+ и переводя тем самым H2CO3 в HCO3 — . Т. о., при прямом и косвенном участии Г. связывается более 90% углекислоты, поступающей из тканей в кровь, и переносится в легкие.

Существенно, что все указанные регуляторы сдвига КДК (H + , ДФГ, CO2) являются взаимосвязанными между собой, что имеет большое значение при ряде возникающих патол, состояний. Так, увеличение концентрации ДФГ в эритроцитах является результатом сложных изменений в их метаболизме, в к-ром увеличение значения pH является основным условием. При ацидозе и алкалозе также вследствие взаимосвязи между H + и ДФГ происходит выравнивание величины P50.

Метаболизм гемоглобина

Биосинтез Г. происходит в молодых формах эритроцитов (эритробластах, нормобластах, ретикулоцитах), куда проникают атомы железа, включаемые в состав Г. В синтезе порфиринового кольца принимают участие глицин и янтарная к-та с образованием δ-аминолевулиновой к-ты. Две молекулы последней превращаются в пиррольное производное — предшественник порфирина. Глобин образуется из аминокислот, т. е. обычным путем синтеза белка. Распад Г. начинается в эритроцитах, заканчивающих свой жизненный цикл. Гем окисляется по альфа-метиновому мостику с разрывом связи между соответствующими кольцами пиррола.

Полученное производное Г. называют вердоглобином (пигмент зеленого цвета). Он очень неустойчив и легко распадается на ион железа (Fe 3+ ), денатурированный глобин и биливердин.

Большое значение в катаболизме Г. отводят гаптоглобин-гемоглобиновому комплексу (Hp—Hb). При выходе из эритроцита в кровяное русло Г. необратимо связывается с гаптоглобином (см.) в Hp—Hb комплекс. После истощения всего количества Hp в плазме Г. абсорбируется проксимальными канальцами почек. Основная масса глобина распадается в почках в течение 1 часа.

Катаболизм гема в Hp—Hb комплексе осуществляется ретикулоэндотелиальными клетками печени, костного мозга и селезенки с образованием желчных пигментов (см.). Отщепляющееся при этом железо очень быстро поступает в метаболический фонд и используется в синтезе новых молекул Г.

Методы определения концентрации гемоглобина. В клин, практике Г. определяют обычно колориметрическим методом с помощью гемометра Сали, основанном на измерении количества гемина, образующегося из Г. (см. Гемоглобинометрия). Однако в зависимости от содержания в крови билирубина и метгемоглобина, а также при некоторых патол, состояниях ошибка метода достигает +30%. Более точными являются спектрофотометрические методы исследования (см. Спектрофотометрия).

Для определения общего гемоглобина в крови используют цианметгемоглобиновый метод, основанный на превращении всех производных Г. (дезокси-Hb, HbO2, HbCO, мет-Hb и др.) в циан-мет-Hb и измерении величины оптической плотности р-ра при 540 нм. Для той же цели используют пиридин-гемохромогенный метод. Концентрацию HbO2 обычно определяют по поглощению света при 542 нм или газометрическим методом (по количеству связанного кислорода).

Гемоглобин в клинической практике

Определение количественного содержания и качественного состава Г. используется в комплексе с другими гематол. показателями (показатель гематокрита, числа эритроцитов, их морфология и др.) для диагностики ряда патол, состояний красной крови (анемии, эритремии и вторичные эритроцитозы, оценка степени кровопотери, сгущения крови при дегидратации организма и ожогах и др.), для оценки эффективности гемо-трансфузий в процессе терапии и т. д.

В норме содержание Г. в крови составляет в среднем для мужчин 14,5 + 0,06 г% (колебания 13,0—16,0 г%) и для женщин 12,9 + 0,07 г% (12,0—14,0 г%), по данным Л. Э. Ярустовской и соавт. (1969); колебания зависят от возрастных и конституциональных особенностей организма, физ. активности, характера питания, климата, парциального давления кислорода в окружающем воздухе. Концентрация Г. в крови является относительной величиной, зависящей не только от абсолютного количества общего Г. в крови, но и от объема плазмы. Увеличение объема плазмы при неизменном количестве Г. в крови может давать при определении Г. заниженные цифры и имитировать анемию.

Для более полной оценки содержания Г. применяют также косвенные показатели: определение цветного показателя, среднего содержания Г. в одном эритроците, среднеклеточной концентрации Г. по отношению к показателю гематокрита и т. д.

Встречающееся при тяжелых формах анемии снижение концентрации Г. в крови до определенной критической величины — 2—3 г% и ниже (гемоглобинопения, олигохромемия) — обычно ведет к смерти, однако при некоторых видах хрон, анемий отдельные больные вследствие развития компенсаторных механизмов адаптируются и к такой концентрации.

При патол, состояниях содержание Г. и количество эритроцитов не всегда изменяются параллельно, что находит отражение в классификации анемий (различают нормо-, гипо- и гиперхромные формы анемии); эритремия и вторичные эритроцитозы характеризуются повышенной концентрацией Г. (гиперхромемией) и увеличением количества эритроцитов одновременно.

Практически весь Г. крови находится внутри эритроцитов; часть его находится в плазме в виде комплекса Hp—Hb. Свободный Г. плазмы составляет в норме 0,02—2,5 мг% (по Г. В. Дервизу и Н. К. Бялко). Содержание свободного Г. в плазме повышается при некоторых гемолитических анемиях, протекающих преимущественно с внутрисосудистым гемолизом (см. Гемоглобинемия).

В связи с наличием нескольких нормальных типов Г., а также появлением в крови при некоторых заболеваниях аномальных гемоглобинов различного происхождения (см. Гемоглобинопатии) большое внимание уделяется определению качественного состава Г. эритроцитов («гемоглобиновой формулы»). Так, обнаружение повышенных количеств Г. типа HbF и HbA2 характерно обычно для некоторых форм бета-талассемии.

Повышение содержания HbF отмечено и при других гематол. болезнях (острый лейкоз, апластическая анемия, пароксизмальная ночная Гемоглобинурия и др.), а также при инфекционном гепатите, при бессимптомном наследственном персистировании фетального гемоглобина и беременности. Концентрация фракции HbA2 в крови повышается при наличии некоторых нестабильных Г., интоксикациях и снижается при железодефицитной анемии.

В онтогенезе у человека отмечается смена различных типов нормальных Г. У плода (до 18 нед.) обнаруживают первичный, или примитивный, гемоглобин P (англ. primitive); его разновидности обозначают так же, как Hb Gower1 и Hb Gower2.

Преобладание первичного Г. соответствует периоду желточного кроветворения, а в следующий за ним период печеночного кроветворения синтезируется уже преимущественно HbF.

Синтез «взрослого» HbA резко интенсифицируется в период костномозгового кроветворения; содержание HbF у новорожденного ребенка составляет до 70—90 % общего количества Г. (остальные 10—30% приходятся на фракцию HbA). К концу первого года жизни концентрация HbF обычно снижается до 1—2% , и соответственно возрастает содержание HbA.

Известно св. 200 аномальных (патол. или необычных) вариантов Г., появление которых обусловливается различными наследственными дефектами образования полипептидных цепей глобина.

Открытие Л. Полинга, Итано (Н. А. Itano) и сотр. в 1949 г. патол, гемоглобина S (англ. sickle cell серповидноклеточный) положило начало учению о молекулярных болезнях. Наличие в эритроцитах аномального Г. обычно (но не всегда) приводит к развитию синдрома наследственной гемолитической анемии (см.).

Большинство из описанных вариантов гемоглобина следует считать не патологическими, а скорее редкими необычными формами Г. С мед. позиций определенное значение имеют гемоглобины S, С, D, Е, Bart, H, М и большая группа (ок. 60) нестабильных Г. Нестабильными Г. называют аномальные варианты Г., у которых в результате замены одной из аминокислот возникла неустойчивость молекулы к действию окислителей, нагревания и ряда других факторов. Г. М-группы возникают вследствие замен аминокислот в полипептидных цепях в области контактов гема и глобина, что приводит не только к неустойчивости молекулы, но и к повышенной склонности к метгемоглобинообразованию. M-гемоглобинопатия нередко является причиной наследственной метгемоглобинемии (см.).

Классификация Г. первоначально была основана на изображении их в порядке открытия буквами латинского алфавита; исключение сделано для нормальных «взрослых» Г., обозначенных буквой А, и Г. плода (HbF). Буквой S обозначен аномальный серповидноклеточный Г. (синоним HbB). Т. о., буквы латинского алфавита от А до S считались общепризнанными обозначениями Г. Согласно принятой на X Международном гематол. конгрессе (Стокгольм, 1964) номенклатуре Г. впредь для обозначения новых вариантов не рекомендуется использовать остальные буквы алфавита.

Вновь открываемые формы Г. теперь принято называть по месту открытия с использованием названия города (области), б-цы или лаборатории, где новый Г. был впервые обнаружен, и с указанием (в скобках) его биохим, формулы, места и характера аминокислотной замены в пораженной цепи. Напр., Hb Koln (альфа2бета298 val—>met ) означает, что в гемоглобине Кёльн произошла замена в 98-й позиции одной из бета-полипептидных цепей аминокислоты валина на метионин.

Все разновидности Г. отличаются друг от друга по физ.-хим. и физ. свойствам, а некоторые и по функциональным свойствам, на чем основаны методы обнаружения различных вариантов Г. в клинике. Открыт новый класс аномальных Г. с измененным сродством к кислороду. Типирование Г. производится с помощью электрофореза и ряда других лабораторных методов (пробы на щелочеустойчивость и тепловую денатурацию, спектрофотометрия и др.).

По электрофоретической подвижности Г. делятся на быстродвижущиеся, медленные и нормальные (имеющие подвижность, одинаковую с HbA). Однако замена аминокислотных остатков не всегда приводит к изменению заряда молекулы Г., поэтому некоторые варианты не могут быть выявлены с помощью электрофореза.

Гемоглобин в судебно-медицинском отношении

Г. и его производные в судебной медицине определяются для установления наличия крови на вещественных доказательствах или в каких-либо жидкостях при диагностике отравлений веществами, вызывающими изменения Г., для отличия крови, принадлежащей плоду или новорожденному, от крови взрослого человека. Имеются данные об использовании особенностей Г., передающихся по наследству, в экспертизе спорного отцовства, материнства и замены детей, а также в целях индивидуализации крови на вещественных доказательствах.

Путем иммунизации животных гемоглобином человека были получены гемоглобинпреципитирующие сыворотки. При помощи этих сывороток в исследуемом на Г. пятне может быть установлено присутствие крови человека.

При установлении наличия крови в пятнах применяется микроспектральный анализ и микрокристаллические реакции. В первом случае Г. щелочью и восстановителем переводится в гемохромоген, который имеет характерный спектр поглощения (см. Гемохромоген), или на Г. действуют концентрированной серной к-той, что приводит к образованию гематопорфирина., Последний обладает типичным спектром поглощения в видимой части спектра.

Из микрокристаллических реакций для установления наличия крови наиболее часто пользуются пробами, основанными на получении кристаллов гемохромогена и солянокислого гемина. Для получения кристаллов гемина из ткани с пятном, исследуемым на Г., берут ниточку и помещают на предметное стекло, добавляют несколько кристаллов хлорида натрия и несколько капель концентрированной уксусной к-ты (реактив Тейхманна). При нагревании (в случае присутствия крови) из Г. образуются кристаллы солянокислого гемина (кристаллы Тейхманна)— коричневого цвета косые параллелограммы, иногда применяются реакции получения из Г. кристаллов йод-гемина — мелкие кристаллы черного цвета в форме ромбических призм.

Производные Г. спектроскопически устанавливаются в крови при некоторых отравлениях. Напр., при отравлении окисью углерода в крови пострадавших обнаруживается карбоксигемоглобин, при отравлении метгемоглобинобразующими веществами — метгемоглобин.

В делах о детоубийстве бывает необходимым установить на различных вещественных доказательствах присутствие крови новорожденного или плода. Поскольку в крови плода и новорожденного наблюдается высокое содержание HbF, а в крови взрослого человека — HbА, различаемых по своим физ.-хим. свойствам, Г. новорожденного (плода) и взрослого человека могут быть легко отдифференцированы.

На практике чаще всего используют щелочную денатурацию, т. к. Г. плода более устойчив к действию щелочей, чем Г. взрослого человека. Изменения Г. устанавливаются спектроскопически , спектрофотометрически или фотометрически.

Синтез полипептидных цепей Г. осуществляется под контролем структурных и (возможно) регуляторных генов. Структурные гены обусловливают определенную аминокислотную последовательность полипептидных цепей, регуляторные— скорость их синтеза (см. Ген).

Существующие 6 типов цепей нормального г. (Hbα, Hbβ, Hbγ, Hbδ, Hbε, Hbζ ) у человека кодируются соответственно 6 генными локусами (α, β, γ, δ, ε, ζ). Полагают, что для α-цепей могут существовать два локуса. Кроме того, обнаружено 5 разных γ-цепей, которые кодируются разными локусами. Т. о., всего у человека может быть от 7 до 10 пар структурных генов, контролирующих синтез Г.

Изучение стадий развития показало, что у человека существует четкая и хорошо сбалансированная генетическая регуляция синтеза различных Г. В первой половине утробной жизни у человека активны гл. обр. локусы α, γ, ζ, ε-цепей (последний лишь кратковременно, в раннем периоде эмбриональной жизни). После рождения одновременно с выключением локуса гамма-цепей активируются локусы β, δ-цепей. В результате такого переключения происходит замена фетального Г. (HbF) на гемоглобины взрослого человека —HbA с малой фракцией HbA2.

Неясными вопросами остаются расположение генных локусов, определяющих синтез Г. на хромосомах, их сцепление, зависимость специфической и связанной с периодами онтогенеза активации и репрессии структурных генов Г. от действия регуляторных генов, влияния гуморальных факторов (напр., гормонов) и т. д.

Синтез цепей глобина представляет собой частный пример синтеза белка в клетке.

Хотя в регуляции синтеза Г. еще много неясного, однако, по-видимому, ключевыми являются механизмы, контролирующие скорость транскрипции иРНК (информационной РНК) с ДНК. Точной характеристики ДНК, специфически ответственной за синтез глобина, не получено. Однако в 1972 г. одновременно в нескольких лабораториях удалось синтезировать ген, регулирующий синтез Г. Это было сделано с помощью фермента обратной транскриптазы (см. Генная инженерия).

Гемовая часть молекулы Г. синтезируется отдельно с помощью серии ферментативных реакций, начиная с активного сукцината (янтарной к-ты) из цикла Кребса и кончая сложным протопорфириновым кольцом с атомом железа в центре.

В процессе белкового синтеза глобиновые цепи принимают характерную для них конфигурацию, и гем «вкладывается» в специальный карман. Далее происходит сочетание завершенных цепей Г. с образованием тетрамера.

Синтез специфической ДНК происходит в предшественниках эритроцитов только до стадии ортохромного нормобласта. За этот период создается окончательный набор полипептидных цепей глобина, происходит его соединение с гемом, образуются все разновидности РНК и необходимых ферментов.

Наследственные нарушения синтеза Г. делятся на две большие группы:

1) так наз. структурные варианты или аномалии первичной структуры Г.— «качественные» гемоглобинопатии типа Hb, S, С, D, E, М, а также заболевания, вызываемые нестабильными Г. и Г. с повышенным сродством к O2 (см. Гемоглобинопатии),

2) состояния, возникающие вследствие нарушенной скорости синтеза одной из полипептидных цепей глобина — «количественные» гемоглобинопатии или талассемии (см.).

При структурных вариантах может изменяться стабильность и функция молекулы Г. При талассемиях структура глобина может быть нормальной. Т. к. во многих популяциях людей распространены оба типа генетического дефекта, то нередко наблюдаются индивидуумы, одновременно гетерозиготные по структурному варианту Г. и по талассемии. Сочетания различных генов составляют весьма сложный спектр гемоглобинопатий. В некоторых случаях мутации могут поражать механизмы переключения синтеза Г., что приводит, напр., к продолжению синтеза фетального Г. у взрослых. Эти состояния носят групповое название наследственной персистенции фетального гемоглобина.

К вариантам со слившимися цепями относятся мутанты типа Hb Lepore, anti-Lepore и Kenya. Наиболее вероятно, что эти структурные аномалии Г. возникли вследствие неравного негомологичного мейотического кроссинговера между тесно сцепленными генами Г. В результате этого, напр., в Hb Lepore α-цепи нормальны, а другие полипептидные цепи содержат часть последовательности δ- и часть последовательности β-полипептидных цепей.

Поскольку мутации могут возникнуть в любом из генов, определяющих синтез Г., может сложиться несколько ситуаций, при которых индивидуумы будут гомозиготами, гетерозиготами или двойными гетерозиготами по аллелям аномальных Г. в одном или нескольких локусах.

Известно более 200 структурных вариантов Г., из них охарактеризовано более 120, и во многих случаях удалось связать структурное изменение Г. с его аномальной функцией. Простейший механизм возникновения нового варианта Г. в результате точковой мутации (замены единственного основания в генетическом коде) может быть продемонстрирован на примере HbS (схема).

Влияние аминокислотного замещения на физ.-хим. свойства, стабильность и функцию молекулы Г. зависит от типа аминокислоты, к-рая заменила прежнюю, и ее положения в молекуле. Ряд мутаций (но не все) существенно изменяют функцию и стабильность молекулы Г. (HbM, нестабильные гемоглобины, гемоглобины с измененным сродством к O2) или ее конфигурацию и ряд физ.-хим. свойств (HbS и HbC).

Гемоглобины нестабильные

Гемоглобины нестабильные — группа аномальных гемоглобинов, отличающихся особой чувствительностью к действию окислителей, нагреванию и ряду других факторов, что объясняется генетически детерминированной заменой в их молекулах одних аминокислотных остатков на другие; носительство таких гемоглобинов часто проявляется как гемоглобинопатия (см.).

В эритроцитах людей — носителей нестабильных Г. появляются так наз. тельца Гейнца, представляющие собой скопления денатурированных молекул нестабильного Г. (врожденная гемолитическая анемия с тельцами Гейнца). В 1952 г. Кати (I. A. Cathie) высказал предположение о наследственном характере этого заболевания. Фрик (P. Frick), Гитциг (W. H. Hitzig) и Ветке (К. Betke) в 1962 г. впервые на примере Hb Zurich доказали, что гемолитическая анемия с тельцами Гейнца связана с присутствием нестабильных гемоглобинов. Каррелл (R. W. Carrell) и Г. Леманн в 1969 г. предложили новое название таких гемоглобинопатий — гемолитические анемии, обусловленные носительством нестабильного Г.

Нестабильность молекул Г. может быть вызвана заменой аминокислотных остатков, контактирующих с гемом; заменой остатка неполярной аминокислоты на полярную; нарушением вторичной структуры молекулы, вызванной заменой любого аминокислотного остатка остатком пролина; заменой аминокислотных остатков в области α1β1- и α2β2-контактов, что может привести к диссоциации молекулы гемоглобина на мономеры и димеры; делецией (утратой) некоторых аминокислотных остатков; удлинением субъединиц, напр, два нестабильных Г.— Hb Cranston и Hb Tak имеют удлиненные по сравнению с нормальным гемоглобином бета-цепи за счет гидрофобного сегмента, присоединенного к их C-концу.

Классификация нестабильных Г., предложенная Дейси (J. V. Dacie) и модифицированная Ю. Н. Токаревым и В. М. Белостоцким, основана на характере изменений в молекуле, делающих Г. нестабильным.

Описано ок. 90 нестабильных Г., причем варианты с заменой аминокислотных остатков в бета-цепях молекулы Г. встречаются примерно в 4 раза чаще, чем с заменой таких остатков в альфа-цепях.

Носительство нестабильных Г. наследуется по аутосомно-доминантному типу, и носители являются гетерозиготами. В ряде случаев возникновение носительства нестабильных Г. является результатом спонтанной мутации. Снижение стабильности Г. не только приводит к его легкой преципитации, но в отдельных случаях и к потере гема. Замещения аминокислотных остатков в местах контактов альфа- и бета-цепей молекулы Г. могут влиять на сродство молекулы к кислороду, на взаимодействие гемов и равновесие между тетрамерами, димерами и мономерами гемоглобина. У людей, гетерозиготных по генам нестабильного Г., синтезируется как нормальный, так и аномальный, нестабильный Г., однако последний быстро денатурирует и становится функционально неактивным.

Тяжелая гемолитическая анемия обычно отмечается у больных, являющихся носителями нестабильных Г. с высокой степенью нестабильности молекулы.

При носительстве других нестабильных Г. клин, проявления обычно бывают средней тяжести или совсем незначительными. В ряде случаев (Hb Riverdale—Bronx, Hb Zurich и др.) носительство нестабильного Г. проявляется в виде гемолитических кризов после приема некоторых лекарств (сульфаниламидов, анальгетиков и др.) или воздействия инфекций. У некоторых больных, напр, носителей Hb Hammersmith, Hb Bristol, Hb Sydney и др., отмечается цианоз кожи, вызванный повышенным образованием мет- и сульфгемоглобинов. Гемоглобинопатии, обусловленные носительством нестабильных Г., следует дифференцировать с гемолитическими и гипохромными анемиями другой этиологии и прежде всего с железодефицитными и гемолитическими анемиями, связанными с генетически обусловленным дефицитом ферментов пентозо-фосфатного цикла, гликолиза и др.

Большинство людей — носителей нестабильных Г. не нуждается в специальном лечении. При гемолизе полезна общеукрепляющая терапия. Всем носителям нестабильных Г. рекомендуется воздерживаться от лекарств-окислителей, провоцирующих гемолиз (сульфаниламиды, сульфоны, анальгетики и др.). Гемотрансфузии показаны только при развитии глубокой анемии. При тяжелом гемолизе с повышенной секвестрацией эритроцитов селезенкой и гиперспленизме показана спленэктомия (см.). Однако спленэктомию детям (до 6 лет) обычно не производят из-за риска развития септицемии.

Методы выявления нестабильных гемоглобинов

Исследование термолабильности гемоглобина — важнейший тест выявления его нестабильности. Он предложен Граймсом (A. G. Grimes) и Мейслером (A. Meisler) в 1962 г. и Дейси в 1964 г. и заключается в инкубации гемолизатов, разбавленных 0,1 М фосфатным или трис-HCl буфером, pH 7,4, при 50—60° в течение часа. При этом нестабильные Г. денатурируются и выпадают в осадок, а количество оставшегося в р-ре термостабильного Г. определяют спектрофотометрически при 541 нм и рассчитывают по формуле:

[E опытной пробы]/[E контрольной пробы] * 100 = = термостабильный гемоглобин (в процентах),

где E — величина экстинкции при длине волны 541 нм.

Относительное содержание термолабильного Г. равно 100% — количество термостабильного Г. (в процентах).

Каррелл и Кей (R. Кау) в 1972 г. предложили инкубировать гемолизаты в смеси 17% р-р изопропанола— трис-буфер, pH 7,4 при 37° в течение 30 мин.

Гемолиз эритроцитов можно вызвать водой, т. к. использование для этой цели четыреххлористого углерода или хлороформа приводит к частичной денатурации нестабильных Г. и искажению получаемых данных.

Наиболее распространенным методом определения нестабильных Г. является гистохим, метод выявления телец Гейнца. Эритроциты при этом окрашивают кристаллическим фиолетовым, метиловым фиолетовым или используют реакцию с ацетилфенилгидразином. Кровь предварительно выдерживают в течение суток при 37°. Следует иметь в виду, что тельца Гейнца могут обнаруживаться и при других гемолитических анемиях, талассемии, при отравлении метгемоглобинообразователями и при некоторых энзимопатиях.

Электрофоретическое разделение гемолизатов на бумаге или ацетат-целлюлозе часто не дает результатов, т. к. у многих нестабильных Г. замена аминокислотных остатков в молекуле не вызывает изменения электрофоретических свойств молекулы. Более информативны в этом отношении электрофорез в полиакриламидном и крахмальном гелях (см. Электрофорез) или изоэлектрическое фокусирование.

У многих больных, являющихся носителями нестабильных Г., моча постоянно или временами приобретает темный цвет вследствие образования дипирролов, что служит достаточно точным признаком присутствия в эритроцитах нестабильных Г.

Библиография: Владимиров Г. Е. и Пантелеева Н. С. Функциональная биохимия, Л., 1965;

Коржуев П. А. Гемоглобин, М., 1964, библиогр.; Кушаковский М. С. Клинические формы повреждения гемоглобина, Л., 1968; Перутц М. Молекула гемоглобина, в кн.: Молекулы и клетки, под ред. Г. М. Франка, пер. с англ., с. 7, М., 1966; Туманов А. К. Основы судебно-медицинской экспертизы вещественных доказательств, М., 1975, библиогр.; Успенская В. Д. О месте синтеза и катаболизма гаптоглобина и его роли в обмене гемоглобина, Вопр. мед. химии, т. 16, № 3, с. 227, 1970, библиогр.; Харрис Г. Основы биохимической генетики человека, пер. с англ., с. 15, М., 1973; Шаронов Ю. А. и Шаронова Н. А. Структура и функции гемоглобина, Молекулярная биол., т. 9, № 1, с. 145, 1975, библиогр.; Сhаrасhe S. Haemoglobins with altered oxygen affinity, Clin. Haemat., v. 3, p. 357, 1974, bibliogr.; Giblett E. R. Genetic markers in human blood, Philadelphia, 1969; Hemoglobin and red cell structure and function, ed. by G. J. Brewer, N. Y.—L., 1972; HuehnsE. R. Genetic control of haemoglobin alpha-chain synthesis, Haematolo-gia, v. 8, p. 61, 1974, bibliogr.; Lehmann H. a. Huntsman R. G. Man’s haemoglobins, Philadelphia, 1974; Perutz M. F. The croonian lecture, 1968, The haemoglobin molecule, Proc, roy, Soc. В., v. 173, р. 113, 1969; Perutz М. F. a. Lehmann H. Molecular pathology of human haemoglobin, Nature (Lond.), v. 219, p. 902, 1968; RoughtonF. J. Some recent work on the interactions of oxygen, carbon dioxide and haemoglobin, Biochem. J., v. 117, p. 801, 1970;Stamatoyannoponlos G. a. NuteP. E. Genetic control of haemoglobins, Clin. Haemat., v. 3, p. 251, 1974, bibliogr.; Van Assendelft O. W. Spectrophotometry of haemoglobin derivatives, Assen, 1970; Weatherall D. J. Molecular basis for some disorders of haemoglobin, Brit, med. J., v. 4, p. 451, 516, 1974; Weatherall D. J. a. Clegg J. B. Molecular basis of thalassaemia, Brit. J. Haemat., v. 31, suppl., p. 133, 1975; Wintro-b e М. M. Clinical hematology, Philadelphia, 1974.

Гемоглобины нестабильные — Дидковский Н. А. и др. Гемоглобин Волга 27 (В9) аланин->аспарагиновая кислота (новый аномальный гемоглобин с выраженной нестабильностью), Пробл, гематол, и перелив, крови, т. 22, № 4, с. 30, 1977, библиогр.; Идельсон Л. И., Дидковский Н. А. и Ермильченко Г. В. Гемолитические анемии, М., 1975, библиогр.; ВunnH. F., Forget B. G. a. Ranney H. M. Human hemoglobins, Philadelphia, 1977, bibliogr.; Lehmann H. a. Kynoсh P. A. Human haemoglobin variants and their characteristics, Amsterdam, 1976.

А.П. Андреева; Ю. H. Токарев (гем. и ген.), А. К. Туманов (суд.).; Ю. H. Токарев, В. М. Белостоцкий.

Формы гемоглобина: виды, характеристики, соединения и функции

Гемоглобин – это необходимый белок для жизнедеятельности человека, он выполняет ряд функций, основной из которых является транспортировка кислорода к клеткам и тканям. Существует несколько форм гемоглобина, каждая из которых обладает своими характеристиками.

Виды по белковому содержанию

В зависимости от белкового содержания формы гемоглобина человека бывают двух видов. Это физиологические и аномальные.

Формы гемоглобина физиологического типа возникают на определенных этапах жизнедеятельности человека. А вот патологические формируются в случае неправильной последовательности размещения ряда аминокислот в глобине.

Основные виды гемоглобина по формам

В человеческом организме могут присутствовать:

  1. Оксигемоглобин. Это вещество взаимодействует с молекулами кислорода. Присутствует в крови артерий, поэтому она и обладает насыщенно алым цветом.
  2. Карбоксигемоглобин. Эта разновидность белков взаимодействует с молекулами углекислого газа. Представленные молекулы проникают в ткани легких, где происходит выведение углекислого газа и насыщение кислорода гемоглобином. Эта разновидность белка присутствует в венозной крови, за счет чего она обладает более темным окрасом и большей густотой.
  3. Метгемоглобин. Это вещество, взаимодействующее с разнообразными химическими агентами. Патологическая форма гемоглобина, а увеличение количества этого вещества может указывать на отравление организма, происходит нарушение насыщаемости тканей кислородом.
  4. Миоглобин. Выступает в качестве полноценного аналога красных кровяных телец. Основное различие заключается только в том, что местом расположения этого белка являются сердечные мышцы. При повреждении мышц происходит попадание миоглобина в русло крови, после чего он выводится из организма благодаря функционированию почек. Но присутствует вероятность закупорки канальца почек, что может спровоцировать отмирание его тканей. В таких ситуациях не исключается возникновение почечной недостаточности и дефицита кислорода в тканях.

Другие виды гемоглобина

В различных информационных источниках выделяют еще и такие формы гемоглобина:

  1. Гликированный гемоглобин. Эта форма представляет собой неразделимое соединение глюкозы и белка. Такая разновидность глюкозы может перемещаться по крови на протяжении длительного времени, поэтому его применяют для выявления уровня сахара.
  2. Фетальный. Форма гемоглобина присутствует в крови эмбриона или новорожденного малыша в первые несколько дней жизнедеятельности. Причислен к активным видам в плане переноса кислорода, под воздействием окружающей среды подвергается быстрому разрушению.
  3. Сульфгемоглобин. Представленная разновидность белка возникает в крови при употреблении большого количества медикаментозных средств. Как правило, содержание этого белка не превышает 10 %.
  4. Дисгемоглобин. Формируется при таких связях, которые полностью лишают белок способности осуществлять его функции. Это указывает на то, что этот вид гемоглобина будет транспортироваться по крови в форме дополнительного вещества. По истечении времени он будет переработан селезенкой. При нормальном состоянии здоровья это вещество обнаруживается в организме каждого человека, но если случаи такого рода связок участятся, то органам, занимающимся транспортировкой крови по организму, придется функционировать с повышенной интенсивностью, в результате чего они быстрее истощатся и износятся.

Патологические формы гемоглобина

Выделяется отдельная группа:

  • D-Пенджаб;
  • S;
  • C;
  • H.

Свое название форма гемоглобина D-Пенджаб получила благодаря широкому распространению на территории Пенджаба, в Индии и Пакистане. Возникновение белка произошло из-за распространения малярии в различных частях Азии. Согласно статистическим данным, этот белок обнаруживается в 55 % случаев от общего числа патологических форм гемоглобина .

Гемоглобин S сформировался на территории Западной Африки в результате пяти отдельных мутаций.

Белок C входит в число наиболее распространенных структурных разновидностей гемоглобина. Люди, у которых присутствует этот белок, могут страдать от такого заболевания, как гемолитическая анемия.

Гемоглобин H провоцирует развитие такого серьезного заболевания, как альфа-талассемия.

Главные функции

Независимо от форм и производных гемоглобина, это вещество обладает следующими функциями:

  1. Транспортировка кислорода. Во время вдыхания человеком воздушных масс происходит проникновение молекул кислорода в ткани легких, а оттуда они перемещаются к другим тканям и клеткам. Гемоглобин соединяет молекулы кислорода и осуществляет их транспортировку. При нарушении этой функции возникает дефицит кислорода, что очень опасно для функционирования мозга.
  2. Транспортировка углекислого газа. В этой ситуации гемоглобин связывает уже молекулы углекислого газа, а затем осуществляет их транспортировку.
  3. Поддержание уровня кислотности. При скоплении углекислого газа в крови наблюдается ее закисление. Этого категорически нельзя допускать, поскольку обязано происходить постоянное выведение молекул углекислого газа.

Нормальные показатели

Для того чтобы врачи могли определить нормальные формы гемоглобина в организме у человека, осуществляется сдача анализов.

Отмечают, что норма свободного гемоглобина в крови людей различных возрастов может иметь такие показатели:

  • мужчины в возрасте от 18 лет – от 120 до 150 г/л;
  • женщины в возрасте от 18 лет – от 110 до 130 г/л;
  • новорожденные и дети в возрасте до 18 лет – 200 г/л.

Увеличение или снижение количества свободного гемоглобина в крови может спровоцировать переход белка в другую форму – патологическую.

Отмечают ряд методов стабилизации его количества, поэтому если результаты анализов указывают на превышенный или сниженный показатель, нужно незамедлительно обращаться к доктору. В связи с наличием большой численности различных форм гемоглобина, определить присутствующую в организме в состоянии только профессиональный врач в лабораторных условиях. Обнаружение ее становится возможным при биохимическом анализе крови.

Классификация видов гемоглобина, норма и причины повышения или понижения показателей

Клинический анализ крови – важная составляющая общеклинической диагностики пациентов с патологиями различного характера. В данное исследование входит анализ уровня красных кровяных телец и железосодержащего белка (ЖБ) в сыворотке крови. Данный показатель очень чувствителен к различным изменениям в работе внутренних органов.

Внимание! Эритроциты обеспечивают внутриклеточное дыхание в человеческом организме. Они выполняют жизненно важные функции – выводят углекислый газ из тела и поставляют кислород к органам. Красные кровяные тельца содержат гемоглобин, который транспортирует молекулы этих веществ.

Что такое гемоглобин?

Гемоглобин – пептидное соединение (ПС), содержащее железо, которое транспортирует кислород ко всем тканям человеческого организма. У всех позвоночных зверей данное белковое соединение содержится в красных кровяных клетках, а у беспозвоночных – в плазме. Как упоминалось выше, его функция заключается в том, чтобы выводить диоксид углерода и заниматься поставкой кислорода в органы.

Железосодержащий ген состоит из четырех базовых субъединиц – альфа и бета 1,2. Стоит отметить, что данное ПС имеет формулу тетрамера. Основными компонентами гемоглобина принято считать железосодержащий гем и белок глобин.

  • Дезоксигемоглобин,
  • Карбоксигемоглобин (окрашивает кровь в синеватый цвет),
  • Метгемоглобин,
  • Фетальный ЖБ (присутствует у плода и исчезает в процессе онтогенеза),
  • Оксигемоглобин (окрашивает кровь в светло-красный цвет),
  • Миоглобин.

Дезоксигемоглобин – это свободный гемоглобин в крови человека. В такой форме это ПС способно присоединять к себе различные молекулы – углекислый/угарный газ, кислород.

Если дезоксигемоглобин связывается с кислородом, образуется оксигемоглобин. Этот тип белка поставляет кислород ко всем тканям. При наличие различных оксилителей железо в ЖБ из двухвалентного состояния переходит в трехвалентное. Такое соединение принято называть метгемоглобином, оно выполняет важную роль в физиологии органов.

Если восстановленный гемоглобин связывается с угарным газом, образуется токсичное соединение – карбоксигемоглобин. Необходимо отметить, что такое соединение связывается в 250 раз эффективнее, чем диоксид углерода. Карбоксигемоглобин имеет длительный период полураспада, поэтому способен сталь причиной сильного отравления.

Витамин С помогает восстанавливать ЖБ, благодаря чему применяется свободно в медицине для лечения отравлений угарными испрениями. Как правило, интоксикация оксидом углерода проявляется цианозом.

Миоглобин по структуре похож на гемоглобин и в большом количестве содержится в миоцитах, особенно кардиомиоцитах. Он связывает молекулы О₂ «на черный день», который впоследствии используется организмом при состояниях, вызывающих гипоксию. Миоглобин обеспечивает работающие мышцы кислородом.

Все вышеперечисленные типы имеют жизненно важное значения в организме человека, однако существуют патологические формы данного пептидного соединения.

Какие опасные разновидности гемоглобина существуют?

Патологические виды гемоглобина у человека, которые приводят к различным болезням:

  • Гемоглобин D-Пенджаб,
  • Гемоглобин S – форма, обнаруженная у людей с серповидно-клеточной анемией,
  • Гемоглобин С – эта форма вызывает хроническую гемолитическую анемию,
  • Гемоглобин H – тип гемоглобина, образованный тетрамером β-цепей, который может присутствовать при α-талассемии.

ЖБ D-Пенджаб является одним из вариантов гемоглобина. Он так назван из-за его высокой распространенности в Пенджабском районе Индии и Пакистана. Это также самый распространенный аномальный вариант железосодержащего белка в Синьцзян-Уйгурском автономном районе Китая. Исследования показывают, что D-Пенджаб составляет более 55% от общего числа патологического гемоглобина.

Он был впервые обнаружен в начале 1950-х годов в смешанной британской и американской семье индийского происхождения из района Лос-Анджелеса, поэтому его иногда называют D Los Angeles. ЖБ D является наиболее распространенным вариантом данного вещества. Он появился в результате распространенности малярии в разных частях Азии.

Гемоглобин S возник в Западной Африке, где распространен больше всего. Он присутствует в меньшей степени в Индии и Средиземноморском регионе. Полиморфизм гена бета S указывает на то, что он возник из пяти отдельных мутаций: четырех в Африке и одного в Индии и на Ближнем Востоке. Наиболее распространенной является аллель, обнаруженная в Бенине в Западной Африке. Другие гаплотипы обнаружены в Сенегале и Банту.

Важно! Ген HbS, присутствующий в гомозиготной форме, является нежелательной мутацией. Малярия, возможно, является фактором отбора, поскольку существует четкая корреляция между распространенностью этой болезни и серповидно-клеточной анемией. Дети с серповидно-клеточной характеристикой Hb SA, переносят малярию гораздо легче и чаще выздоравливают.

Железосодержащий белок C (Hb C) является одним из наиболее распространенных структурных вариантов гемоглобина. Люди со «здоровым» С (Hb C) фенотипически нормальны, тогда как пациенты с патологическим (Hb CC) могут страдать от гемолитической анемии. Хотя клинические осложнения, связанные с патологическим С, не являются серьезными.

Гемоглобин H вызывает тяжелое заболевание – альфа-талассемию. α-талассемия приводит к снижению продукции альфа-глобина, поэтому образуется меньше альфа-глобиновых цепей, что приводит к избытку β-цепей у взрослых и у новорожденных. Избыточные β-цепи образуют нестабильные тетрамеры, называемые гемоглобином H или HbH четырех бета-цепей. Избыточные γ-цепи образуют тетрамеры, которые слабо связываются с кислородом, поскольку их сродство к O2 слишком велико, поэтому оно не диссоциируется на периферии.

Как диагностируют патологические формы железосодержащего белка в крови?

Как упоминалось выше, анализ на содержание гемоглобина входит в клиническое исследование сыворотки крови. В некоторых случаях показано проведение биохимии крови для точного определения патологий данного ПС.

Кровь на анализ сдается натощак и в утреннее время. Рекомендуется не употреблять пищу за 12 часов до забора биологического материала (кала, мочи, крови), чтобы не исказить результаты анализов обследования. В особенности нежелательно заниматься физическими нагрузками, употреблять психотропные вещества или другие лекарственные средства. Диеты придерживаться не нужно, однако от жирной или жареной пищи воздержаться следует, чтобы не повлиять на различные параметры в кале.

Нормальные показатели железосодержащего белка

Расшифровкой анализа общеклинического исследования сыворотки крови должен заниматься только врач. Однако выделяют некоторые общие нормы гемоглобина, присущие всем людям. Уровень данного ПС измеряется в г/л (граммы на литр). В зависимости от лаборатории методики анализа могут различаться.

Норма дезоксигемоглобина в крови у различных возрастных групп:

  • Мужчины от 18 лет – 120-150 г/л,
  • Женщины от 18 лет – 110-130,
  • Маленький ребенок – 200,

Повышение или снижение уровня свободного гемоглобина может приводить к патологиям. Первичная гемоглобинопатия обусловлена наследственными причинами, поэтому не лечится на любых этапах развития. Однако существуют методы стабилизации пациентов, поэтому в любом случае нужно обратиться к врачу. При серьезном снижении уровня данного ПС в кровеносном русле показан искусственный кровезаменитель.

Совет! Синтетическое соединение «перфторан» способно улучшить качество жизни больных с анемией. Искусственно повышать гемоглобин нужно с осторожностью, так как в некоторых случаях кровезаменители могут вызывать серьезные побочные эффекты.

Малокровие: негативные последствия и лечение явления

У взрослого пациента снижение гемоглобина провоцирует кислородный дефицит. Игнорирование этого может привести к:

  1. Снижению иммунитета. В итоге, человек начинает чаще болеть инфекционными недугами.
  2. Быстрой утомляемости и хронической слабости.
  3. Деформации эпителиальных тканей человека (слизистых, ротовой полости, ЖКТ, верхних слоев кожного покрова).
  4. Нарушению функциональности НС. Пациент может страдать от раздражительности, беспричинных перепадов настроения, пониженной концентрации внимания.

Также малокровие может стать причиной:

  • трещин на губах,
  • резких мышечных болей,
  • выпадения волос,
  • ломкости ногтевой пластины,
  • пристрастия к неприятным запахам.

При беременности

Малокровие при вынашивании ребенка – частое явление среди женщин. Если отклонение от нормы очень большое, оно может спровоцировать:

  • маточную гипотонию,
  • гипоксию,
  • задержку развития и роста будущего малыша,
  • низкий вес ребенка при рождении,
  • нарушения функциональности НС и системы дыхания.

Специалисты считают, что ребенок, родившейся у женщины с таким нарушением, будет неважно учиться, часто болеть и страдать от патологии внутренних органов.

Лечение

Для поднятия гемоглобина важно узнать причину его снижения. Можно заняться самолечением и добавить в свой рацион железосодержащие продукты и витамин В. Но если они не будут полноценно абсорбироваться в ЖКТ, эффекта придется ждать очень долго.

Чаще всего врачи прибегают к консервативной терапии и назначают пациенту железосодержащие медикаменты. Хороший результат показывают «Хеферол», «Ферроплекс» и «Ферлатум». Большинство пациентов потребляет лекарства перорально, но если это проблематично, врачи используют парентеральное введение.

Если пациент склонен к дисфункции ЖКТ, он может параллельно употреблять ферментные и обволакивающие лекарственные средства.

Если медикаментозная терапия не помогает, пациенту могут перелить цельную кровь или эритроцитарную массу.

Высокий гемоглобин: негативные последствия и лечение явления

Высокая концентрация эритроцитов провоцирует нарушение работы всего организма. В первую очередь, это влияет на головной мозг и кровоснабжение тканей. Селезенка, печень и печенка начинают увеличиваться в размерах. Человеческий организм не успевает справляться с негативным влиянием большого количества эритроцитов. Если не предпринимать ни каких действий, человек может умереть.

Лечение

Чтобы подобрать подходящее лечение, пациент должен описать врачу свой образ жизни.

В первую очередь, больному прописывают пить много чистой воды. Употребление воды с высоким содержанием хлора будет только способствовать росту гемоглобина. «Водный» рацион можно разбавлять компотами и соками без сахара.

В меню обязательно должны быть овощи и фрукты, обогащенные клетчаткой.

Важно! Клетчатка нормализует пищеварительные процессы, нарушение которых приводит к накоплению токсинов и самоотравлению организма. Ответной реакцией на это явление считается продуцирование мозгом большого количества эритроцитов.

Человек с высоким гемоглобином должен отказаться от:

  • красного мяса,
  • печени,
  • гречки,
  • красных овощей, фруктов и ягод.

Употребление жирных блюд и сладостей должно быть минимальным.

Пациентам нужно больше двигаться и пребывать на свежем воздухе.

Читайте также:  Лечение панкреатита народными средствами, самые эффективные методы

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *